Boundedness criterion for integral operators on the fractional Fock–Sobolev spaces

نویسندگان

چکیده

We provide a boundedness criterion for the integral operator $$S_{\varphi }$$ on fractional Fock–Sobolev space $$F^{s,2}({{\mathbb {C}}}^n)$$ , $$s\ge 0$$ where (introduced by Zhu [18]) is given $$\begin{aligned} S_{\varphi }F(z):= \int _{{\mathbb {C}}^n} F(w) e^{z \cdot \bar{w}} \varphi (z- \bar{w}) d\lambda (w) \end{aligned}$$ with $$\varphi $$ in Fock $$F^2({{\mathbb {C}}^n})$$ and $$d\lambda (w): = \pi ^{-n} e^{-|w|^2} dw$$ Gaussian measure complex $${\mathbb {C}}^{n}$$ . This extends recent result Cao et al. (Adv Math 363: 107001, 33 pp, 2020). The main approach to develop multipliers Hermite–Sobolev $$W_H^{s,2}({{\mathbb {R}}}^n)$$

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uniform Boundedness Principle for operators on hypervector spaces

The aim of this paper is to prove the Uniform Boundedness Principle and Banach-Steinhaus Theorem for anti linear operators and hence strong linear operators on Banach hypervector spaces. Also we prove the continuity of the product operation in such spaces.

متن کامل

Boundedness of Rough Integral Operators on Triebel-lizorkin Spaces

We prove the boundedness of several classes of rough integral operators on Triebel-Lizorkin spaces. Our results represent improvements as well as natural extensions of many previously known results. 2010 Mathematics Subject Classification: Primary: 42B20; Secondary: 42B15, 42B25.

متن کامل

Boundedness of Fourier Integral Operators on Modulation Spaces

It is known that Fourier integral operators arising when solving Schrödinger-type operators are bounded on the modulation spaces Mp,q, for 1 ≤ p = q ≤ ∞, provided their symbols belong to the Sjöstrand class M. However, they generally fail to be bounded on Mp,q for p 6= q. In this paper we study several additional conditions, to be imposed on the phase or on the symbol, which guarantee the bound...

متن کامل

Boundedness of Singular Integral Operators On

Eleonor Harboure Beairiz Viviani Presentado pOl" Carlos Segovia Abstract: We study the boundedness of singular integral operators on Orlicz-Hardy spaces H w , in the setting of spaces of homogeneous type. As an application of this result, we obtain a characterization of HwIRn in terms of the Riesz Transforms. § 1. NOTATION AND DEFINITIONS Let X be a set. A function d : X x X -+ IR+ U {OJ shall ...

متن کامل

Generalized Fractional Integral Operators on Vanishing Generalized Local Morrey Spaces

In this paper, we prove the Spanne-Guliyev type boundedness of the generalized fractional integral operator Iρ from the vanishing generalized local Morrey spaces V LM {x0} p,φ1 to V LM {x0} q,φ2 , 1 < p < q < ∞, and from the space V LM {x0} 1,φ1 to the weak space VWLM {x0} q,φ2 , 1 < q < ∞. We also prove the Adams-Guliyev type boundedness of the operator Iρ from the vanishing generalized Morrey...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Zeitschrift

سال: 2022

ISSN: ['1432-1823', '0025-5874']

DOI: https://doi.org/10.1007/s00209-022-03050-3